SELF- SUPPORTING TOWER 24.0M HIGH TO INSTALL AT AMERICAN CONSULATE PREMISIS, CHENNAI.

PROJECT:

To design a self supporting steel tower 24.0 m high to be install in American Consulate Premisis, Chennai.

Soil Report:

Given by Nagadi Consultants Pvt. Itd., Chennai. Report No. G©8930 Dt: 17-11-2016.

S.B.C. Taken as 11 t / sq.m. at 1.5 m from E.G.L.

ANALYSIS & DESIGN:

- a) I S Codes Reffered:
- i) IS 800 2007, General Construction in Steel Code of Practice.
- ii) IS 802 -1992, Code of Practice for use of Structural Steel in over head Transmission line Tower.
- iii) IS 456 2000 Plain and Reinforced Concrete code of Practice
- iv) IS 875 (Part 1) 1987 Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures Dead Loads-Unit weights of Building Matrerials and Stored Materials
- v) IS 875 (Part 3) 1987 Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures Wind Loads

b) Materials used:

Tata Structura Circular Hollow Sections with YST 310 Grade

- i) 65 Nominal bore X 4.5 thk. with 7.93 kg/m
- ii) 50 Nominal bore X 4.5 thk. with 6.19 kg/m
- iii) 40 Nominal bore X 4.0 thk. with 4.37 kg/m

M S Plates for Base plate, Stiffener plate and cap plate with YST 250 Grade

High Strength Bolts

- b) Loads Considered:
- i) Dead Load (DL) Self Weight of Structure
- ii) Wind Load (WL) as per IS 875 (Part 3)

Basic Wind Speed in Chennai = Vb = 50 m /s upto 10M ht. (Appendix A)

Design Wind Speed = Vz = Vb * k1 * k2* k3

Structure is taken as of Class A Category 2 with Mean probable

Design Life of 25 Years.

where k1 - Risk Coefficient = 0.9 (Table 1)

- k2 Terrain Height and Structure Size Factor (Table 2)
- k3 Topography Factor 1 (Table 3)

Design Wind Pressure (Pz);

The design wind speed at any height above mean ground level shall be obtained by the following relationship between wind pressure (Pz) and wind velocity (Vz)

$$Pz = 0.6 * Vz ^ 2*Cf*E$$

where Vz - Effective wind Velocity

Cf - Force Coefficient = 1.6 (Table 32 of IS 875 part 3 page 47)

E - Solid area / Gross area = 0.175

Design Wind Pressure calculation at different Heights:

DESIGN WIND SPEED (Pz)										
S.No	Height in m	k1	k2	k3	Vz in m/s	Pz in N/ sq.m	Pz in kg/ sq m			
1	upto 10 m	0.9	1	1	45	238.14	24.05214			
2	15 m	0.9	1.05	1	47.25	262.54935	26.51748435			
3	20 m	0.9	1.07	1	48.15	272.646486	27.53729509			
4	24 m	0.9	1.12	1	50.4	298.722816	30.17100442			

Wind Pressure equal to 27 kg / m2 is considered throughout as a conservative approach.

The above loads are applied to the Stadd Model and analysis is done.

Stadd pro input and Out put are also enclosed.

Design of Foundation:

7 Y-X

Reactions from Stadd (DL + WL)

Sketch - 1

Reactions from Stadd For DL Only

Sketch - 2

Materials Required:

Grade of concrete = M25

Grade of Reinforcement = Fe 415

<u>Calculations</u>:

Area of Foundation provided (refer drawing) = $A = 2.4 \times 2.4 = 5.76 \text{ m}$ 2

Section Modulus of Footing (Z) = $2.4*2.4^2.4^2.4^3$ = 2.3 m³

C/C Distance between Tower Legs = L1 = 1.1 m

Lever arm $(X1) = SQ. ROOT (1.1^2 - 0.55^2)$

From Stadd (Refer above figs.)

Total Reaction from the Tower =
$$2*217.9 + 163.2$$

DL only (Refer Sketch – 2) = $600 \text{ kg} = 6.0 \text{ kN}$ (A)

Total Horizontal force in X-X Direction =
$$154.89+327.81+149$$
 DL + WL (Refer Sketch – 2) = 631.7 kg = 6.2 k N

Total Horizontal force in Z-Z Direction =
$$289.18-10.63+86$$

DL + WL (Refer Sketch – 2) = $364.55 \text{ kg} = 3.58 \text{ k N}$

<u>Total Weight of the Foundation</u>:

Weight of Footing Mat =
$$2.4*2.4*0.6*25$$
 = 86.4 k N
Weight of Pedestal = $1.8*1.8*(1.5-0.6-0.1)*25$ = 64.8 k N
= $1.8*1.8*0.3*25$ = 24.3 k N

Total =
$$175.5 \text{ k N}$$
 (B)

Total Downward Weight (P) =
$$A + B = 185 \text{ k N}$$

1) Check for Maximum Pressure:

qo (max.) =
$$\frac{P}{A} + \frac{Pe}{Z} + \frac{Mxx}{Z} + \frac{Mzz}{Z}$$

= 40.00 k N / m2 < 110 k N / m2 at 1.5 m from E.G.L. (S B C of soil from soil report Attached)

2) Check for Minimum Pressure:

qo (min.) =
$$\frac{P}{A} - \frac{Pe}{Z} - \frac{Mxx}{Z} - \frac{Mzz}{Z}$$

$$= 25.18 \text{ k N}/\text{m}^2$$

No Tension at the base of foundation. Hence no uplift. Hence Foundation is stable.

3) Design of Reinf. for Bending:

Actual Pressure at the base of foundation = 40.00 k N/sq.m

Bending Moment =
$$40 * 0.3 ^2 / 2$$
 = $1.8 k N - m$

Area of Steel Required =
$$\frac{1.8 * 10^6}{230 * 0.9 * 550}$$
 = 15.80 cm²

Provide 10Y @ 150 C/C . Hence Safe.

4) Check for Punching Shear:

Total downward force = 140.4 + 89.1 = 229.6 k N

Punching Sheer at distance d/2 from periphery of column

$$= qo(LXB - (a+d)(b+d))$$

$$= 40 (3*3 - 2* (1.8+.55))$$

= 172.50 K N

Shearing Area along Critical section = 2 * (a+d) (b+d) * d

$$= 2 * (1.8+0.55)(1.8+0.55)*0.55$$

 $= 6.07 \text{ m}^2$

Nominal Shear Stress tv = 172.5 / 6.07

= 28.38 k N / m2

= 0.03 N/mm2

< 1.25 N/mm2

Hence Safe.

Permissible Shear Stress tc = ks * 0.25* sqrt fck

ks = 1 (As per CI 10.24 0f IS 456-2000)

tc = 1.25 N/mm2

<u>Design of Pedestal</u>:

Length of Pedestal = 1.8 m

Breadth of Pedestal = 1.8 m

Area of Pedestal = 3.24 m2

Total Reaction Load = 140.4 k N

Pressure = 140.4 / 3.24

 $= 43.34 \text{ k N/m}^2$

 $= 0.0.44 \text{ N/ mm}^2$

Permissible Bearing Stress = 0.8*25 = 20 N/ mm2

Hence Safe.

Min. Reinforcement required = 0.12 % *b*I

= 0.12 * 1.8 * 1.8/100

= 38.88 cm2

Provide 12Y @ 150 C/C alround.

Hence safe.

Design of Bolt:

Max. Factored Reaction = 74.1 k N

Un Factored Reaction = 49.4 k N

(say) = 50.0 k N

No. of Bolts Provided = 4 nos.

Force on each bolt = 50 / 4 = 12.5 k N

Diameter of the bolt = 16 mm

Effective area of the bolt = 200.9 mm2

Stress in each bolt = 62.2 N/ mm2

Allowable tensile Stress = 100 N / mm2

(As per Table 2.10 of IS: 800-2000)

Hence Safe.

Length of Bolt provided = 900 mm

Permissible Bond Stress for M25 = 1.25*0.9 = 1.125 N/mm2

(CI B-2.1 and Table 21 of IS 456: 2000)

Total Force that each bolt can carry = 3.14*16*900*1.125

= 50.87 k N

> 12.5 k N (reqd.)

Hence Safe.